An Efficient Method to Transform SAT problems to Binary Integer Linear Programming Problem

نویسندگان

  • Wenxia Guo
  • Jin Wang
  • Majun He
  • Xiaoqin Ren
  • Wenhong Tian
  • Qingxian Wang
چکیده

In computational complexity theory, a decision problem is NP-complete when it is both in NP and NP-hard. Although a solution to a NP-complete can be verified quickly, there is no known algorithm to solve it in polynomial time. There exists a method to reduce a SAT (Satifiability) problem to Subset Sum Problem (SSP) in the literature, however, it can only be applied to small or medium size problems. Our study is to find an efficient method to transform a SAT problem to a mixed integer linear programming problem in larger size. Observing the feature of variable-clauses constraints in SAT, we apply linear inequality model (LIM) to the problem and propose a method called LIMSAT. The new method can work efficiently for very large size problem with thousands of variables and clauses in SAT tested using up-to-date benchmarks. keywords: SAT(Satisfiability problem); BinaryILP(Integer Linear programing); 3SAT; Reduction

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An L1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem

This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and presents necessary and sufficient conditions to have unbounde...

متن کامل

Well-dispersed subsets of non-dominated solutions for MOMILP ‎problem

This paper uses the weighted L$_1-$norm to propose an algorithm for finding a well-dispersed subset of non-dominated solutions of multiple objective mixed integer linear programming problem. When all variables are integer it finds the whole set of efficient solutions. In each iteration of the proposed method only a mixed integer linear programming problem is solved and its optimal solutions gen...

متن کامل

A mixed integer linear programming formulation for a multi-stage, multi-Product, multi-vehicle aggregate production-distribution planning problem

In today’s competitive market place, companies seek an efficient structure of supply chain so as to provide customers with highest value and achieve competitive advantage. This requires a broader perspective than just the borders of an individual company during a supply chain. This paper investigates an aggregate production planning problem integrated with distribution issues in a supply chain ...

متن کامل

A New Method For Solving Linear Bilevel Multi-Objective Multi-Follower Programming Problem

Linear bilevel programming is a decision making problem with a two-level decentralized organization. The leader is in the upper level and the follower, in the lower level. This study addresses linear bilevel multi-objective multi-follower programming (LB-MOMFP) problem, a special case of linear bilevel programming problems with one leader and multiple followers where each decision maker has sev...

متن کامل

Solving Single Machine Sequencing to Minimize Maximum Lateness Problem Using Mixed Integer Programming

Despite existing various integer programming for sequencing problems, there is not enoughinformation about practical values of the models. This paper considers the problem of minimizing maximumlateness with release dates and presents four different mixed integer programming (MIP) models to solve thisproblem. These models have been formulated for the classical single machine problem, namely sequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018